

CIRM Genomics Knowledge Network

David Haussler
UC Santa Cruz Genomics Institute
February 22, 2021

CIRM Center For Excellence in Stem Cell Genomics

- Centerpiece of CIRM Knowledge Network is the Stem Cell Hub of the Center for Excellence in Stem Cell Genomics.
- The Center is led by Mike Snyder (Stanford), Joe Ecker (Salk), and Josh Stuart (UCSC)
- Focus: Cardiovascular Disease, Cell Differentiation in brain and pancreas, Molecular Networks in all types of stem cells
- Supports 15 CIRM laboratories in addition to Snyder, Ecker and Stuart
- All genomics data generated by supported projects are made available globally through the Stem Cell Hub no later than the time of publication.

Stem Cell Hub: Data

84 TB of data in 180,170 files from 18 CIRM research labs

6.7 TB of that data is **currently publicly available**; the rest is pre-publication

The data are

Machine-Learning Ready*

https://cirm.ucsc.edu

Stem Cell Hub: Assays & Organs

*chart is based on proportion of fastq files in each category

Cell Browser

The Cell Browser is a software **tool using a 2D viewer** to represent single-cell RNA expression

https://cells.ucsc.edu/

Integrates CIRM data with global single-cell data, including HCA

Shows expression data for individual cells

Allows for a **visual comparison** of large datasets consisting of many cells

Includes overlays of metadata, marker gene levels, cell clustering and more

Useful for comparing single-cell layout/batch correction methods

Coordinated with Human Cell Atlas (HCA)

Genome Browser

Data Biosphere

Scalable and interoperable computing resource for the genomics scientific community

Cloud-based infrastructure

• Highly elastic; shared analysis and computing environment

Data access and security

- Genomic and single cell datasets, phenotypes and metadata
- Securely housed, large datasets generated by NHGRI, NHLBI, NCI, CZI funded programs and HCA community, as well as other initiatives / agencies

Collaborative computing environment for datasets and analysis workflows

- Storage, scalable analytics, data visualization
- Security, training & outreach, with new models of data access
 - ...for both users with limited computational expertise and sophisticated data scientist users

The next phase in genomics: a complete reference of human genome diversity

NIH Genomics

2005

International HapMap Project

June & July 2000

First draft of human genome sequence released

2006

The Cancer Genome Atlas

1000 Genome Project

2008

HUMAN PANGENOME

All of US

2015

Launch USA All of Us Biobank

2013

Global Alliance for Genomics and Health (GA4GH)

2010

Draft Sequence of the Neandertal

2014

The Human Heredity and Health in Africa (H3Africa)

Trans-Omics for Precision Medicine (TOPMed) Program 2012

Electronic Medical Records and Genomics (eMERGE)

Applicants Accepted: UK Biobank

2019

Launch of the Human Pangenome

Reference Consortium

The Human Cell Atlas

2017

Population Architecture using Genomics and Epidemiology (PAGE)

Implementing Genomics in Practice (IGNITE)

2020

NIH Genomics

New initiative to launch The development of a new pan-reference genome!

Simons Diversity Study

GWAS Catalog 2016

The Human Cell Atlas

2004

CIRM created

2005

International HapMap **Project**

June & July 2000

First draft of human genome sequence released

The Cancer Genome Atlas

1000 Genome Project

2008

HUMAN

PANGENOME

2015

Launch USA All of Us Biobank

2013

Global Alliance for Genomics and Health (GA4GH)

2010

Draft Sequence of the Neandertal

2014

The Human Heredity and Health in Africa (H3Africa)

Trans-Omics for Precision dicine (TOPMed) Program 2012

Electronic Medical Records and Genomics (eMERGE)

Applicants Accepted: UK Biobank

Launch of the Human Pangenome Reference Consortium

2017

Population Architecture using Genomics and Epidemiology (PAGE)

Implementing Genomics in Practice (IGNITE)

2020

Human Reference Genome: Largely represents one individual

Does not adequately represent genetic diversity in the human population.

A Human Pangenome Reference Eliminates Disparities

- Unbiased representation of sequence diversity in the human population
- Comprehensive map of genome variation
- New reference data structure to nucleate and foster a new ecosystem of pangenome tools for clinical use

Need to generate and analyze *complete* human genomes

RIBOSOMES: TRANSLATION

Bringing together amino acids to form particular proteins

rDNA Arrays

GENOME SPATIAL ORGANIZATION

Typically Spatially distinct from active TAD compartments

CENTROMERE FUNCTION

Regulate Centromere Function

NIH Pangenome Project Population

Global Genomic Partnerships

New partnerships (domestic & international) to reach a more "complete" human pangenome reference

Representation and Sampling

Cover genetic and geographic diversity

✓ Availability of low passage cell lines

Availability of trios/parental data.

CIRM Stem Cell Opportunities

- A reference iPSC line will be needed for each of the
 >350 diverse globally recognized reference
 genomes funded by NIH with unrestricted use
- Possibility to establish and distribute standard organoids of various tissue types derived from reference lines, an "organoid nursery": Organoid Hotel California
- Opportunity to construct the first "Human
 Pan-Epigenome" by concentrating global research on a common reference lines and organoids, validate with primary tissue
- Opportunity for collaboration with many NIH institutes making disease-specific iPSC libraries
- Ethnically diverse reference iPSCs could serve as matched normals for wide range of disease cohort studies

Human Pangenome iPSC Diversity Panel:

Example: Cerebral Organoids

Green: HOPX Red: SOX2 Lavender: CTIP2

The marriage of stem cell and genomics research is the right foundation for a more equitable regenerative medicine

Health Care

Ability to study a complete genome for important clinical variants

Genome Diversity

Improve our understanding of human sequence variation and evolution

Expand epigenetic studies across different cell types for important clinical variants

Acknowledgements

Jim Kent Benedict Paten Karen Miga Ed Green Mark Akeson Adam Novack Miten Jain Hugh Olsen Erik Garrison Marina Hauknes Jean Monlongs Glenn Hickey

Adirna Fuller

Alissa Resch

Brittany Kerr

Tony Tsung Yu Lu Xian Chang Trevor Pesout Ryan Lorig-Roach Charles Markello Melissa Meredith Jonas Sibbesen Kishwar Shafin Jouni Siren **Beth Sheets** Jordan Eizenga Julian Lucas **Brian Hannafious**

Galt Barber Jonathan Casper Max Haeussler Clav Fischer Parisa Nejad Matthew Speir William Sullivan Chris Villarreal Kamron Moiabe Pranav Muthuraman Beagan Nguy Tiana Pereira

Ira Hall Wen-Wei Liao Shuangjia Lu

Ting Wang Lucinda Fulton Sarah Cody Robert Fulton Wen-Wei Liao Nathan Stitziel Haley Abel

Kerstin Howe

HARVARD MEDICAL SCHOOL

Shilpa Gard

Haoyu Cheng

Xiaowen Fena

Hena Li

Eddie Belter Milinn Kremitizki Derek Albracht Chad Tomlinson Allison Regier Chris Markovic Tina Lindsay

Paul Flicek Susan Fairley Daniel Zerbino

Justin Zook

Icahn School of Medicine

at Mount Sinai

Eimear Kenny

Vimi Desai

CBG
Max Planck Institute
of Molecular Cell Biology

Gene Myers

Genome \ciences UNIVERSITY OF M WASHINGTON →Pete Audano

Evan Eichler Katv Munson Mitchell Vollger Arvis Sulovari

David Porubksy

National Human Genome Research Institute Adam Felsenfeld Adam Phillippy

Sergey Koren Mike Smith Arang Rhie Carolyn Hutter Chirag Jain Taylorlyn Stephan Baergen Schultz Heidi Sofia

> National Center for Biotechnology NCBI Information Valerie Schneider

Terence Murphy

Paul Kitts Chunlin Xiao Françoise Thibaud-Nissent

Company Partnerships

THE ROCKEFELLER UNIVERSITY

Ellen Kellly

DECODING THE GENOME

Brittney Martinez

Science for the benefit of humanity

Erich Jarvis Giulio Forment Lauren Shalmiyev Sadye Paezi Olivier Fedrigo

UNIVERSITY OF CAMBRIDGE

Richard Durbin

aws

TOWARDS A COMPLETE REFERENCE OF **HUMAN GENOME** DIVERSITY

